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ABSTRACT
Our long term research goal is to develop a fully automated, image-
based diagnostic system for early diagnosis of pulmonary nodules that
may lead to lung cancer. This paper focuses on monitoring the devel-
opment of lung nodules detected in successive chest low dose (LD) CT
scans of a patient. We propose a new methodology for 3D LDCT data
registration which is non-rigid and involves two steps: (i) global align-
ment of one scan (target) to another scan (reference or prototype) using
the learned prior appearance model followed by (ii) local alignment in
order to correct for intricate deformations. After equalizing signals for
two subsequent chest scans, visual appearance of these chest images is
modeled with a Markov-Gibbs random field with pairwise interaction.
We estimate the affine transformation that globally register the target
to the prototype by gradient descent maximization of a special Gibbs
energy function. To handle local deformations, we deform each voxel
of the target over evolving closed equi-spaced surfaces (iso-surfaces)
to closely match the prototype. The evolution of the iso-surfaces is
guided by an exponential speed function in the directions that minimize
distances between the corresponding voxel pairs on the iso-surfaces in
both the data sets. Preliminary results on the 135 LDCT data sets from
27 patients show that our proper registration could lead to precise diag-
nosis and identification of the development of the detected pulmonary
nodules.

Index Terms— Lung cancer, nodules, CT, non-rigid registration.

1. INTRODUCTION
Because lung cancer is the most common cause of cancer deaths, fast
and accurate analysis of pulmonary nodules is of major importance
for medical computer-aided diagnostic systems (CAD). We have al-
ready introduced the following three successive pre-processing stages
of such a system: a fully automatic segmentation algorithm to sepa-
rate lung regions from LDCT images [1, 2], a fully automatic nodule
detection algorithm showing the accuracy up to 93.3% on the experi-
mental database containing 200 real LDCT chest data sets with 36,000
2D slices [3], and an accurate segmentation algorithm to separate the
detected pulmonary nodules from the lung regions in the LDCT im-
ages [4]. This paper focuses on the next stage, namely, on accurate
registration of the detected nodules for subsequent volumetric mea-
surements to monitor how the nodules are developing over the time.

(a) (b) (c) (d)
Fig. 1. Pre-processing steps: (a) an initial LDCT slice, (b) the segmented lung
regions [1, 2], (c) the normalized segmented lung regions, and (d) the segmented
pulmonary nodules [4].

Figure 1 shows the results of the above-mentioned three pre-
processing stages of the proposed CAD system for monitoring detected

pulmonary nodules (these stages are not discussed in this paper): (i) an
initial LDCT slice in Fig. 1(a) is segmented with the algorithms
in [1, 2] in order to isolate lung tissues from the surrounding structures
in the chest cavity as shown in Fig. 1(b), (ii) data normalization as
shown in Fig. 1(c), and (iii) the nodules in the isolated lung regions
are segmented by evolving deformable boundaries under forces that
depend on the learned current and prior appearance models as shown
in Fig. 1(d) (see [4]). This paper focuses on details of the proposed
global and local registration models being the core of our approach to
monitoring the nodule development.

Previous work. Tracking the temporal nodule behavior is a chal-
lenging task because of changes in the patient’s position at each data
acquisition, as well as effects of heart beats and respiration. In order to
accurately measure how the nodules are developing in time, all these
motions should be compensated by registering LDCT data sets taken
at different time. Many methods have been proposed for solving med-
ical image registration problems (see e.g. [5]) and to exclude the lung
motions (see [6]). Moreover, it has been reported that the computer-
assisted volume measurement is more reliable for small pulmonary
nodules than the measurement by human experts [7]. Therefore, the
remaining principal difficulty in monitoring and evaluating the nodule
growth rate is automatic identification (or registration) of correspond-
ing nodules in the follow-up scans. Registration of the two successive
CT scans determines transformation of one image with respect to the
other [8]. Some examples of previous works on registration of CT lung
images are overviewed below.

Most of them exploit corresponding local structural elements (fea-
tures) in the images. For the follow-up of small nodules, Brown et
al. [9] developed a patient-specific model with 81% success for 27 nod-
ules. Ko et al. [10] used centroids of local structures to apply rigid and
affine image registration with 96% success for 58 nodules of 10 pa-
tients. To account for non-rigid motions and deformations of the lung,
Woods et al. [11] developed an objective function using an anisotropic
smoothness constraint and a continuous mechanical model. Feature
points required by this algorithm are detected and registered as ex-
plained in [12], and then the continuous mechanical model is used to
interpolate the image displacement. In the Wood’s experiments, the
difference between the estimated and actual volumes was about 1.6%.
Later on, Dougherty et al. [13] developed an optical flow and model
based motion estimation technique for estimating first a global para-
metric transformation and then local deformations of the images. This
method aligned sequential CT images with a 95% correlation. Naqa et
al. [14] combined the optical flow analysis with spirometric data (mea-
surements of the airflow into and out of lungs) in order to track the
breathing motion automatically. The spirometry in this study was ob-
tained by using the reconstruction of free breathing from the 4D CT
data proposed in [15].

In several studies CT lung images are matched directly for pul-
monary registration. Zhang et al. [16] used a standard lung atlas to
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analyze the pulmonary structures in CT images. The atlas is registered
to a new image by combining global rigid and local elastic transforma-
tions of a 3D surface. Li et al. [17] still used feature points to search for
correspondence but exploited landmark and intensity based registration
algorithms to warp a template image to the rest of the lung volumes.
Okada et al. [18] proposed an anisotropic intensity model fitting with
analytical parameter estimation to evaluate the nodule volume without
explicit image segmentation. Zhao et al. [19] and Kostis et al. [20]
proposed to segment 2D and 3D nodules by thresholding the voxel in-
tensity followed by a connectivity filter. Their algorithms accurately
segment well-defined solid nodules with similar average intensities but
become unreliable on cavities or non-solid nodules. Reeves et al. [21]
proposed a framework for measuring changes of the nodule size from
two CT scans recorded at different times. This approach is based on
using rigid registration to align the scans followed by adaptive thresh-
olding to segment the nodules.

Nonetheless, all the existing computational methods for monitor-
ing the pulmonary nodules detected in the CT scans do not account
for large deformations of the lung tissues due to breathing and heart
beating. These methods are not suitable for some types of pulmonary
nodules such as cavities and ground glass nodules. Also, these meth-
ods require significant user interaction which is difficult for a clinical
practitioner.

2. LUNGMOTION CORRECTION MODELS

2.1. Global Alignment

Basic notation. Let Q = {0, . . . , Q − 1}; R = [(x, y, z) : x =
0, . . . , X − 1; y = 0, . . . , Y − 1; z = 0, . . . , Z − 1], and Rp ⊂ R
be a finite set of scalar image signals (e.g. gray levels), a 3D arith-
metic lattice supporting digital LDCT image data g : R → Q, and
an arbitrary-shaped part of the lattice occupied by the prototype, re-
spectively. Let a finite set N = {(ξ1, η1, ζ1), . . . , (ξn, ηn, ζn)} of
the (x, y, z)-coordinate offsets define neighboring voxels, or neighbors
{((x+ ξ, y + η, z + ζ), (x− ξ, y− η, z− ζ)) : (ξ, η, ζ) ∈ N} ∧ Rp

interacting with each voxel (x, y, z) ∈ Rp. The set N yields a 3D
neighborhood graph onRp that specifies translation invariant pairwise
interactions between the voxels with n families Cξ,η,ζ of second-order
cliques cξ,η,ζ(x, y, z) = ((x, y, z), (x + ξ, y + η, z + ζ)). Interaction
strengths are given by a vector VT =

[
VT

ξ,η,ζ : (ξ, η, ζ) ∈ N ]
of po-

tentials VT
ξ,η,ζ =

[
Vξ,η,ζ(q, q

′) : (q, q′) ∈ Q2
]
depending on signal

co-occurrences; here T indicates transposition.

Data Normalization: To account for possible monotone (order -
preserving) changes of signals (e.g. due to different sensor characteris-
tics), every LDCT data set is equalized using the cumulative empirical
probability distribution of its signals (see Fig. 1(c)).

MGRF based appearance model: In a generic MGRF with multiple
pairwise interaction [2], the Gibbs probability P (g) ∝ exp(E(g))
of an object g aligned with the prototype g◦ on Rp is specified
with the Gibbs energy E(g) = |Rp|VTF(g) where FT(g) is the
vector of scaled empirical probability distributions of signal co-
occurrences over each clique family: FT(g) = [ρξ,η,ζF

T
ξ,η,ζ(g) :

(ξ, η, ζ) ∈ N ] where ρξ,η,ζ =
|Cξ,η,ζ |
|Rp| is the relative size of the

family and Fξ,η,ζ(g) = [fξ,η,ζ(q, q
′|g) : (q, q′) ∈ Q2]T; here,

fξ,η,ζ(q, q
′|g) =

|Cξ,η,ζ;q,q′ (g)|
|Cξ,η,ζ | are empirical probabilities of sig-

nal co-occurrences, and Cξ,η,ζ;q,q′(g) ⊆ Cξ,η,ζ is a subfamily of
the cliques cξ,η,ζ(x, y, z) supporting the co-occurrence (gx,y,z = q,
gx+ξ,y+η,z+ζ = q′) in g. The co-occurrence distributions and the
Gibbs energy for the object are determined over Rp, i.e. within the
prototype boundary after an object is affinely aligned with the pro-

totype. To account for the affine transformation, the initial image is
resampled to the back-projectedRp by interpolation.

The appearance model consists of the neighborhood N and the
potentialV to be learned from the prototype.

Learning the potentials: The MLE of V is proportional in the first
approximation to the scaled centered empirical co-occurrence distribu-
tions for the prototype [2]:

Vξ,η,ζ = λρξ,η,ζ

(
Fξ,η,ζ(g

◦)− 1

Q2
U

)
; (ξ, η, ζ) ∈ N (1)

where U is the vector with unit components. The common scaling
factor λ is also computed analytically; it is approximately equal to Q2

if Q � 1 and ρξ,η,ζ ≈ 1 for all (ξ, η, ζ) ∈ N . In our case it can be
set to λ = 1 because the registration uses only relative potential values
and energies.
Learning the characteristic neighbors: To find the characteris-
tic neighborhood set N , the relative Gibbs energies Eξ,η,ζ(g

◦) =
ρξ,η,ζV

T
ξ,η,ζFξ,η,ζ(g

◦) for the clique families, i.e. the scaled vari-
ances of the corresponding empirical co-occurrence distributions, are
compared for a large number of possible candidates.

To automatically select the characteristic neighbors, we consider
an empirical probability distribution of the energies as a mixture of a
large “non-characteristic” low-energy component and a considerably
smaller characteristic high-energy component: P (E) = πPlo(E) +
(1− π)Phi(E). Both the components Plo(E), Phi(E) are of arbitrary
shape and thus are approximated with linear combinations of positive
and negative discrete Gaussians (efficient EM-based algorithms intro-
duced in [1, 2] are used for both the approximation and the estimation
of π).

Appearance-based registration: The desired affine transformation
of an object g corresponds to a local maximum of its relative energy
E(ga) = VTF(ga) under the learned appearance model [N ,V].
Here, ga is the part of the object image reduced toRp by the 3D affine
transformation a = [a11, . . . , a23]: x′ = a11x + a12y + a13z + a14;
y′ = a21x + a22y + a23z + a24; z′ = a31x + a32y + a33z + a34.
The initial transformation step is a pure translation with a11 = a22 =
a33 = 1; a12 = a13 = a21 = a23 = a31 = a32 = 0, ensuring the
most “energetic” overlap between the object and prototype. In other
words, the chosen initial position (a∗

14, a
∗
24, a

∗
34) maximizes the Gibbs

energy. Then the gradient search for the local energy maximum closest
to the initialization selects all the 12 parameters a.

Figures 2(c,d) show the results of the global alignment of two seg-
mented lungs. It is clear from Fig. 2(d) that the global alignment is not
perfect due to local deformation.

(a) (b) (c) (d) (e) (f)
Fig. 2. 3D global and local registration: (a) reference data, (b) target data,
(c) target data after 3D affine transformation, (d) checkerboard visualization
to show the motion of lung tissues, (e) results of our non-rigid registration,
and (g) checkerboard visualization to show the quality of the proposed local
deformation model.

2.2. Local motion model

To handle local deformations, we propose to deform the object over
evolving closed equi-spaced surfaces (distance iso-surfaces) so that it
closely matches the prototype. The evolution is guided by an expo-
nential speed function and intends to minimize distances between cor-
responding voxel pairs on the iso-surfaces in both the images. The
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normalized cross correlation of the Gibbs energy is used to find corre-
spondences between the iso-surfaces.

Our approach involves the following steps. First, a distance map
inside the object is generated using fast marching level sets [22]. Sec-
ondly, the distance map is used to generate iso-surfaces (Fig. 3). Note
that the number of iso-surfaces is not necessarily the same for both
the images and depends on the accuracy and the speed required by the
user. The third step consists in finding correspondences between the
iso-surfaces using the normalized cross correlation of the Gibbs en-
ergy. Finally, the evolution process deforms the iso-surfaces in the first
data set (the target image) to match the iso-surfaces in the second data
set (the prototype).

(a) (b)

Fig. 3. (a) Equi-spaced surfaces and (b) the proposed evolution scenario.

The following notation will be used for defining the evolution
equation:

• bh
g1 = [ph

k : k = 1, . . . , K] – K control points on a sur-
face h on the reference data such that pk = (xk, yk, zk) form
a circularly connected chain of line segments (p1,p2), . . . ,
(pK−1,pK), (pK ,p1);

• bγ
g2 = [pγ

n : n = 1, . . . , N ] – N control points on a surface γ
on the target data such that pn = (xn, yn, zn) form a circularly
connected chain of line segments (p1,p2), . . . , (pN−1,pN ),
(pN ,p1);

• S(Ph
k ,Pγ

n) – the Euclidean distance between a point on the sur-
face h in the image g1 and the corresponding point on the sur-
face γ in the image g2;

• S(Pγ
n,Pγ−1

n ) – the Euclidean distance between a point on the
surface γ in the image g1 and the nearest point on the surface
γ − 1 in the image g1, and

• ν(.) – the propagation speed function.
The evolution bτ → bτ+1 of a deformable boundary b in dis-

crete time, τ = 0, 1, . . ., is specified by the system pγ
n,τ+1 = pγ

n,τ +
ν(P γ

n,τ )un,τ ; n = 1, . . . , N of difference equations where ν(P γ
n,τ ) is

a propagation speed function for the control pointPγ
n,τ and un,τ is the

unit vector along the ray between the two corresponding points. The
propagation speed function has to satisfy the following conditions:

1. ν(P γ
n,τ ) = 0 if S(Ph

k ,Pγ
n,τ ) = 0, and otherwise

2. ν(P γ
n,τ ) = min

[
S(Ph

k ,Pγ
n,τ ), S(Pγ

n,τ ,Pγ−1
n,τ ), S(Pγ

n,τ ,Pγ+1
n,τ )

]
.

The latter condition, known as the smoothness constraint, prevents
the current point from cross-passing the closest neighbor surfaces
as shown in Fig. 3(b). Note that the function ν(P γ

n,τ ) = −1 +

exp
(
β(Pγ

n,τ )S(Ph
k ,Pγ

n,τ )
)
satisfies the above conditions, where

β(Pγ
n,τ ) is the propagation term such that at each surface point:

β(Pγ
n,τ ) =

ln

(
min

[
S(Ph

k ,Pγ
n,τ ),S(Pγ

n,τ ,Pγ−1
n,τ ),S(Pγ

n,τ ,Pγ+1
n,τ )

]
+1

)

S(Ph
k

,P
γ
n,τ )

.

Again, the checkerboard visualization (Fig. 2(d)) of the data set in
Fig. 2(a) and the aligned data set in Fig. 2(c) highlights the effect of the
motion of lung tissues. It can be seen that the connections at the lung
edges between the two volumes are not smooth when using only the
global registration model. This is due to the local deformation which

comes from breathing and heart beats. The connections of the lung
edges between the two volumes are considerably smoother when using
the proposed local deformation model (see Fig. 2(f)).

Validation of the proposed local deformation model: To validate the
local registration, we simulated local deformations on the real LDCT
data set using the free form deformation (FFD) [23] (it simulates local
displacement with the 3D cubic spline). To measure the accuracy of
the proposed local registration, three different types of the deformation
fields were generated with the FFD: (1) small deformation, (2) moder-
ate deformation, and (3) large deformation as shown in Table 1. Our
registration model has been applied to each type of deformation, and
the accuracy of our approach has been quantitatively assessed by com-
paring the simulated and recovered voxel displacements (see Table 1).

Table 1. Registration accuracy for simulated displacements (all units
in mm). Simulated displacement

Type 3 Type 2 Type 1
Maximum displacement, % 19.9 10.8 1.7
Mean ± standard deviation, % 9.1± 1.1 2.3 ± 0.7 0.6 ± 0.4

Alignment error
Maximum error 2.1 1.4 0.6
Mean ± standard deviation, % 1.2 ± 1.6 1.0 ± 0.4 0.4 ± 0.3

3. EXPERIMENTAL RESULTS

The proposed registration models were tested on the clinical datasets
collected from 27 patients. Each patient has five LDCT scans, with the
three months period between each two successive scans. This prelimi-
nary clinical database was collected by the LDCT scan protocol using
a multidetector GE Light Speed Plus scanner (General Electric, Mil-
wuakee, USA) with the following scanning parameters: slice thickness
of 2.5 mm reconstructed every 1.5 mm, scanning pitch 1.5, pitch 1 mm,
140 KV, 100 MA, and F.O.V 36 cm.

After the two volumes at different time instants are registered, the
task is to find out if the nodules are growing or not. For this purpose,
the lung nodules were segmented after registration using our previous
approach [4]. Once the nodules are segmented in the original and the
registered image sequences, the volumes of the nodules are calculated
using the Δx, Δy, and Δz values from the scanner (in our case, 0.7,
0.7, and 2.5 mm, respectively). Figure 4 shows the estimated growth
rate for the two detected pulmonary nodules (for two different patients
over one year) before and after data alignment.

Fig. 4. Results of our registration for two patients over one year
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Fig. 5. Estimated volumetric changes for 14 malignant and 13 benign nodules

It is clear that our alignment algorithm facilitates accurate eval-
uations of temporal changes in the nodule size. Moreover, the pro-
posed alignment would help doctors and radiologists to track the nod-
ule growth direction which is crucial for surgical or radiation treatment.
Also, it is apparent that the malignant nodule doubles in size for 360 or
less days, while the volumetric changes in the benign nodule are very
small (maximum 6% over one year, see Figure 5).

Our statistical analysis using the unpaired t-test shows that the dif-
ference between the average growth rate of malignant nodules and the
average growth rate of benign nodules found with the proposed ap-
proach is statistically significant (as shown in Table 2). Figure 5 shows
volumetric changes for 14 malignant and 13 benign nodules. It is obvi-
ous that the growth rate of the malignant nodules is considerably higher
than the growth rate of the benign nodules, and this encourages to use
the estimated growth rate as a discriminatory feature.

Table 2. Growth rate statistics for 14 patients with malignant nodules
and 13 patients with benign nodules (p – the statistical significance; μ
– the mean rate, %; σ – the standard deviation, %).

Scanning Malignant Benign
period μM σM μB σB p
3 months 22 16 0.9 0.7 10−4

6 months 49 20 2.9 2.3 10−4

9 months 91 29 4.5 3.8 10−4

12 months 140 32 5.4 4.3 10−4

A traditional Bayes classifier based on the analysis of the growth
rate of both benign and malignant nodules for 27 patients diagnosed 14
and 13 patients as malignant and benign, respectively. For simplicity,
this classifier used a multivariate Gaussian model of the growth rate
with the rates at 3, 6, 9, and 12 months as four discriminant features.
The same patients were diagnosed by biopsy (the ground truth)) show-
ing that the classification was 100% correct. Therefore, the proposed
image analysis techniques could be a promising supplement to the cur-
rent technologies for diagnosing lung cancer.

4. CONCLUSIONS

We introduced a new approach for registering 3D spiral LDCT images
that combines an initial affine global alignment of one scan (the tar-
get) to another scan (the reference) using the learned prior appearance
model and subsequent local alignments that account for more intricate
deformations. Preliminary results on 27 patients show the registra-
tion could lead to accurate diagnosis and identification of temporal
development of detected pulmonary nodules. Our present C++ imple-
mentation on the Intel dual processor (3GHz each) with 8 GB memory
and 1.5 TB hard drive with RAID technology takes about 330 sec for
processing 182 LDCT slices of size 512x512 pixels each, i.e about
1.8 sec per slice. Our future work will focus on testing the proposed
approach on more diverse data sets. We have already started to collect
the data from additional 200 patients with different types of pulmonary
nodules (e.g., ground glass, cavity, etc), in order to better measure the
accuracy and limitations of the proposed framework.
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